其实,考试的时候拿到题目,第一思维就考虑有没有数量、位置和样式的规律。但是通常希望大家把你看得的特诊能够写下来,不要一直看图形。要把特征写下来,然后比较相同点和不同点就可以快速的找出规律,自然就可以找到正确的答案了。
例题2:
把下面的六个图形分为两类,使每一类图形都有各自的共同特征或规律,分类正确的一项是:
A、①②④,③⑤⑥ B、①⑤⑥,②③④
C、①③④,②⑤⑥ D、①④⑤,②③⑥
这个题目是参照2011年国考的思路,浙江省考的题目。题目还是比较有新意的。拿到题目,还是考虑数量、位置和样式的第一思维搞不定,马上我们就用第二思维,对称、开闭和曲直来做。不难发现第一幅度、第二幅图和第四幅图是对称的,而第三幅图、第五幅图和第六幅图是不对称的,因此分组就此而定。故答案选择A。
例题3:
这个题目很容易定位是考第三思维。难点不是识别,难点是不知道该怎么去选择下个图形。或者立体图形的特征怎么去把握。在第三思维中,我们一般从特殊面、相对面和相邻面来找图形的特征。但是最重要也是最常考的是相对面。最为特殊的相对面就是平行面的问题。通常我们找平行面是在平面里面用“相间”和“Z”端来找。这个大家都会。如下图中,两个阴影的就是平行面。
但是这个题目显然用不上,因此这个题目需要用到的是立体图形找相平行面的法则。我称之为“四面法则”。图和图中,有共同的字母“N”和“E”,由于平行面法则,两个相互平行的面有且只能看到其中的一个面。因此“N”和“E”的平行面,在图 和图 中是看不到的。我们能够看到“N”和“E”,实际上这两个面的平行面是看不到的。那事实上看到“N”和“E”就相当于看到了4个面。这个时候在图和图中出现了第五和第六个面“T”和“V”,这个时候很容易得出结论,“T”和“V”是平行面。同理在图和图中,“E”和“X”是平行的。因此,“N”和“Z”是平行的。通过平行面很容易就排除了A和B答案。其实做到这里,很容易把题干中的立体图形转化成我们熟悉的平面图形。以图为基准,划平面展开图如下:
做到这一步,这个题目就非常简单了,可以用我们讲的三面相邻的时针法了。C答案中”X”到“T”再到”Z”是逆时针,题干也是,故答案选择C。D答案时针刚好相反不符合图形本身的特征。
其实,讲到这里,三大思维就一目了然了,大家要更进一步熟悉这三大思维的具体细节,可以研究一下华图蔡金龙老师的《判断推理高分速成》,或者直接到华图教育总部和行测判断推理组的老师来交流相关问题。
(责任编辑:admin)