4006-01-9999

  【理解、区别幂次数列


  国考中的整体思维,多级数列,幂次数列与递推数列,三者在形式上极其不好区分,幂次数列要求考生对于单数字发散的敏感度要够,同时要联系到多数字的共性联系上,借助于几个题目的感觉对于理解和区别幂次数列是极为重要的。


  对于多级数列与递推数列,其区分度是极小的,几乎看不出特别明显的区别,考生在国考当中遇到这类题目首先应该想到的就是做差,通过做差来看数列的整体趋势,如果做差二次,依然不成规律,就直接进行递推,同时要看以看做一次差得到的数列是否能用到递推中。


  【例2】(国考 2010-41)1,6,20,56,144,(    )


  A. 384    B. 352    C. 312    D. 256


  【答案】B。在这个题目中,我们可以得到这样一个递推规律,即(6-1)×4=20,(20-6)×4=56,(56-20)×4=144,因此(144-56)×4=352。这个规律实际上就是两项做一次差之后4倍的递推关系,也就是充分利用了做差来进行递推。


  【例3】(联考 2010.9.18-34)3,5,10,25,75,(    ),875


  A. 125    B. 250    C. 275    D. 350


  【答案】B。这个题目中,其递推规律为:(5-3)×5=10,(10-5)×5=25,(25-10)×5=75,(75-25)×5=250,(250-75)×5=875,故答案为B选项。


  联系起来说,考生首先应当做的是进行单数字的整体发散,判断数字推理中哪几个题目为幂次或幂次修正数列,其次需要做的就是进行做差,最后进行递推,递推的同时要考虑到做一次差得到的二级数列。


  这里针对许多学员遇到幂次修正数列发散不准确的问题,提出这样一个方法,首先我们知道简单的幂次及幂次修正数列可以当成多级数列来做,比如二级和三级的等差和等比数列。在2010年的国考数字推理中,我们发现这样一道数字推理题:

(责任编辑:admin)
无法在这个位置找到: jiangxi/ajaxfeedback.htm

经典图书

  • 国考新大纲系列
  • 名师模块教材
  • 面试教材系列
  • 公务员省考教材
  • 华图教你赢系列
  • 热门分站
  • 热门地市
  • 热门考试
  • 热门信息
  • 热门推荐
2015省公务员考试高分课程体系
2015年地方公务员考试高分备考特训营
  • 申论
  • 行测
  • 面试
  • 历年真题
  • 模拟试题
  • 时事热点