4、绕圈问题
例4:在一个圆形跑道上,甲从A点、乙从B点同时出发反向而行,8分钟后两人相遇,再过6分钟甲到B点,又过10分钟两人再次相遇,则甲环行一周需要( )?
A.24分钟 B.26分钟 C.28分钟 D.30分钟
答案:C。解析:甲、乙两人从第一次相遇到第二次相遇,用了6+10=16分钟。即两人16分钟走一圈。从出发到两人第一次相遇用了8分钟,所以两人共走半圈,即从A到B是半圈,甲从A到B用了8+6=14分钟,故甲环行一周需要14×2=28分钟。
二、追及问题
要点提示:甲,乙同时行走,速度不同,这就产生了“追及问题”。假设甲走得快,乙走得慢,在相同时间(追及时间)内:
追及路程=甲的路程-乙的路程 =甲的速度×追及时间-乙的速度×追及时间 =速度差× 追及时间
核心是“速度差”。
例5:一列快车长170米,每秒行23米,一列慢车长130米,每秒行18米。快车从后面追上慢车到超过慢车,共需( )秒钟
A.60 B.75C.50 D.55
解析:A。设需要x秒快车超过慢车,则(23-18)x=170+130,得出x=60秒。
例6:甲、乙两地相距100千米,一辆汽车和一台拖拉机都从甲开往乙地,汽车出发时,拖拉机已开出15千米;当汽车到达乙地时,拖拉机距乙地还有10千米。那么汽车是在距乙地多少千米处追上拖拉机的?
A.60千米B.50千米 C.40千米D.30千米
解析:C。汽车和拖拉机的速度比为100:(100-15-10)=4:3,设追上时经过了t小时,那么汽车速度为4x,拖拉机速度则为3x,则3xt+15=4xt,得xt=15,即汽车经过4xt=60千米追上拖拉机,这时汽车距乙地100-60=40千米。
三、流水问题
要点提示:
顺水速度=船速+水速
逆水速度=船速-水速
船速=(顺水速度+逆水速度)/2
水速=(顺水速度-逆水速度)/2
(责任编辑:huatu)- 上一篇:余数问题不再是公务员考试行测困扰题
- 下一篇:公务员考试行测言语理解模块备考攻略