您当前位置:公务员考试网 > 国家公务员 > 试题资料 > 每日一练 > 2023年国家公务员考试行测数量关系:均值不等式巧解

2023年国家公务员考试行测数量关系:均值不等式巧解利润最值问题

2022-07-18 10:14:32 公务员考试网 华图教育微信公众号 华图在线APP下载 文章来源:华图教育

均值不等式的一种表达形式如下,

如果a、b均为非负实数,那么当且仅当a=b时,等号成立。

由上述表达式,我们可以得到如下结论:已知a、b均为正数,若a+b为定值,则当且仅当a=b时,ab取得最大值。

示例

已知x>0,y>0,且2x+5y=20,则xy的最大值是多少?

在这道题目中,2x相当于a,5y相当于b,则a+b=20,是定值,所以当且仅当a=b,即2x=5y时,2x×5y存在最大值,因为2x=5y且加和等于20,所以2x=5y=10,求出2x×5y=10xy=100,即xy最大值为10。

【应用】

例1

某商场销售一批名牌衬衫平均每天可售出20件,每件盈利40元。为了扩大销售增加盈利尽快减少库存,商场决定采取适当的降价措施,经调查发现如果每件衬衫每降价1元,商场平均每天可多售出2件,每件衬衫降低( )元时,商场每天盈利最多。

A.12 B.15 C.20 D.25

答案选B。接下来通过本题的解析我们梳理此类题目的解题思路:

(1)找等量关系,列方程。

本题所求为利润最值问题,结合条件可以得出等量关系:总利润=单件利润×销量。分析可得如果售价下降1元在成本不变的情况下利润即下降1元,同时销量会增加2件,这道题可以设每件衬衫的售价下降了x元,商场的总利润为y元,那么可列出方程y=(40-x)×(20+2x)。

(2)凑配定和,求极值。

y=(40-x)×(20+2x),由前面学习的均值不等式的结论可知,要想求两部分乘积的最大值,需要这两部分的加和为定值,而我们会发现40-x和20+2x的加和并不是常数,所以不为定值,那么就需要未知数在加和后抵消掉,则可将方程变形为y=2×(40-x)×(10+x),此时40-x与10+x的和为定值,所以当且仅当40-x=10+x,即x=15时,y存在最大值,答案为B。

2024考试入面分数线
特别推荐

省考面试礼包】|【省考面试系统提升】|【省考面试图书】|【面试题库

相关内容推荐

(编辑:duyujiao)
有报考疑惑?在线客服随时解惑

报名条件?

岗位选择?

笔试科目?

面试方式?

......

点击所需资料,扫码领取