2019-10-08 14:22:19 公务员考试网 文章来源:华图教育
*资料包涵盖但不限于以上内容
保存小程序码至
手机进行扫码
这篇文章主要来讲排列组合的解题法宝之一的插板法,下边我们一起来看一下什么是插板法。
基本题型
基本题型为:n个相同元素,不同个m组,每组至少有一个元素;则只需在n 个元素的n-1 个间隙中放置m-1 块隔板把它隔成m 份,求共有多少种不同方法?
其解题思路为:将n 个相同的元素排成一行,n 个元素之间出现了(n-1 )个空档,现在我们用(m-1 )个“档板”插入(n-1 )个空档中,就把n 个元素隔成有序的m 份,每个组依次按组序号分到对应位置的几个元素(可能是1 个、2 个、3 个、4 个、….),这样不同的插入办法就对应着n 个相同的元素分到m 组的一种分法,这种借助于这样的虚拟“档板”分配元素的方法称之为插板法。
例题:共有10 完全相同的球分到7 个班里,每个班至少要分到一个球,问有几种不同分法?
解析:我们可以将10 个相同的球排成一行,10 个球之间出现了9 个空隙,现在我们用6 个档板”插入这9个空隙中,就“把10 个球隔成有序的7 份,每个班级依次按班级序号分到对应位置的几个球(可能是1 个、2 个、3 个、4 个),这样,借助于虚拟“档板”就可以把10 个球分到了7 个班中。
基本题型的变形
(1)变形1:有n 个相同的元素,要求分到m 组中,问有多少种不同的分法?
解题思路:这种问题是允许有些组中分到的元素为“0”,也就是组中可以为空的。对于这样的题,我们就首先将每组都填上1 个,这样所要元素总数就m 个,问题也就是转变成将(n+m )个元素分到m 组,并且每组至少分到一个的问题,也就可以用插板法来解决。
例题:有8 个相同的球放到三个不同的盒子里,共有()种不同方法。
解答:题目允许盒子有空,则需要每个组添加1 个,则球的总数为8+3 ×1=11,此题就有C(10 ,2)=45(种)分法了。
(2)变形2:有n 个相同的元素,要求分到m 组,要求各组中分到的元素至少某个确定值S(s>1,且每组的s值可以不同),问有多少种不同的分法?
解题思路:这种问题是要求组中分到的元素不能少某个确定值s,各组分到的不是至少为一个了。对于这样的题,我们就首先将各组都填满,即各组就填上对应的确定值s 那么多个,这样就满足了题目中要求的最起码的条件,之后我们再分剩下的球。这样这个问题就转变为上面提到的变形1的问题了,也就可以用插板法来解决。
例题:15 个相同的球放入编号为1、2、3 的盒子内,盒内球数不少于编号数,有几种不同的放法?
解析:编号1:至少1 个,符合要求;
编号2:至少2 个:需预先添加1 个球,则总数-1 ;
编号3:至少3 个,需预先添加2 个,才能满足条件,后面添加一个,则总数-2 ;
则球总数15-1-2=12 个放进3 个盒子里,所以C(11,2)=55 (种)。
通过上面的例题,我们可以看到在排列组合题其实是有方法及步骤可循的,只要大家能够牢记做题步骤即可快速作出答案。望大家能够熟练掌握,在考场做到快速解题。
↓↓↓↓2022年国家公务员考试相关推荐↓↓↓↓ | |||
国考 备考策略 |
国考 问答百科 |
各部委 职位分析 |
万人 模考大赛 |
相关内容推荐:
2022年国家公务员考试考点分布|考场设置
贴心微信客服
贴心微博客服
10万+
阅读量150w+
粉丝1000+
点赞数
国家公务员考试公告 国家公务员考试大纲 国家公务员考试专业分类目录 国家公务员考试职位表 国家公务员考试报名入口 国家公务员考试报考条件 国家公务员考试报名费用 国家公务员考试报名人数 国家公务员考试报名确认 国家公务员考试准考证打印 国家公务员考试行测备考 国家公务员考试申论备考 国家公务员考试考试时间 国家公务员考试考试流程 国家公务员考试考试科目 国家公务员考试答题须知 国家公务员考试考场规则 国家公务员考试真题解析 国家公务员考试成绩查询 国家公务员考试分数线 国家公务员面试公告 国家公务员面试名单 国家公务员考试资格复审 国家公务员考试调剂名单 国家公务员面试技巧 国家公务员面试礼仪 国家公务员结构化面试 国家公务员无领导小组讨论 国家公务员考试体检考察 国家公务员考试录用公示